FEATURES:

- Enhanced N channel FET with no inherent diode to Vcc
- 5Ω bidirectional switches connect inputs to outputs
- Zero propagation delay, zero ground bounce
- Undershoot clamp diodes on all switch and control inputs
- Available in 48-pin QVSOP package

APPLICATIONS:

- Hot-swapping, hot-docking
- Voltage translation (5V to 3.3 V)
- Power conservation
- Capacitance reduction and isolation
- Bus isolation
- Clock gating

DESCRIPTION:

The QS32X861 provides two sets of ten high-speed CMOS TTLcompatible bus switches. The low ON resistance of the QS32X861 allows inputs to be connected to outputs without adding propagation delay and without generating additional ground bounce noise. The Bus Enable ($\overline{\mathrm{BEn}})$ signals turn the switches on.

The QS32X861 bus switch is ideal for switching digital buses, as well as for hotplug buffering and 5 V to 3 V conversion.

The QS32X861 is characterized for operation at $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM $^{(2)}$	Supply Voltage to Ground	-0.5 to +7	V
VTERM $^{(3)}$	DC Switch Voltage Vs	-0.5 to +7	V
VTERM $^{(3)}$	DC Input Voltage VIN	-0.5 to +7	V
VAC	AC Input Voltage (pulse width $\leq 20 \mathrm{~ns})$	-3	V
Iout	DC Output Current	120	mA
Pmax	Maximum Power Dissipation $\left(\mathrm{TA}_{\mathrm{A}}=85^{\circ} \mathrm{C}\right)$	0.5	W
TsTG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. $V c c$ terminals.
3. All terminals except Vcc.

CAPACITANCE

$\left(\mathrm{TA}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}, \mathrm{V}\right.$ IN $=0 \mathrm{~V}$, Vout $\left.=0 \mathrm{~V}\right)$

Pins	Typ.	Max. ${ }^{(1)}$	Unit
Control Pins	3	5	pF
Quickswitch Channels (Switch OFF)	5	7	pF

NOTE:

1. This parameter is measured at characterization but not tested.

PIN DESCRIPTION

Pin Names	I/O	Description
$A_{0}-A_{19}$	$1 / 0$	Bus A
Bo- B19	$1 / 0$	Bus B
$\overline{B E n}$	I	Bus Enable

FUNCTION TABLE ${ }^{(1)}$

$\overline{\mathrm{BE} 1}$	$\overline{\mathrm{BE} 2}$	$\mathrm{~A} 0-\mathrm{A} 9$	$\mathrm{~A} 10-\mathrm{A} 19$	Function
L	L	$\mathrm{B} 0-\mathrm{B} 9$	$\mathrm{~B} 10-\mathrm{B} 19$	Connect
L	H	$\mathrm{B} 0-\mathrm{B} 9$	Z	Connect
H	L	Z	B10-B19	Connect
H	H	Z	Z	Disconnect

NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level
Z = High-Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE
Following Conditions Apply Unless Otherwise Specified:
Industrial: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VCC}=5.0 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Test Conditions	Min.	Typ. ${ }^{1)}$	Max.	Unit
VIH	Input HIGH Level	Guaranteed Logic HIGH for Control Pins	2	-	-	V
VIL	Input LOW Level	Guaranteed Logic LOW for Control Pins	-	-	0.8	V
In	Input LeakageCurrent (Control Inputs)	$\mathrm{OV} \leq \mathrm{VIN} \leq \mathrm{Vcc}$	-	± 0.01	± 1	$\mu \mathrm{A}$
Ioz	Off-State Output Current (Hi-Z)	OV \leq Vout \leq Vcc, Switches OFF	-	± 0.01	± 1	$\mu \mathrm{A}$
RoN	Switch ON Resistance	Vcc = Min., Vİ $=0 \mathrm{~V}$, Ion $=30 \mathrm{~mA}$	-	5	7	Ω
		$\mathrm{VCC}=$ Min., VIN $=2.4 \mathrm{~V}$, Ion $=15 \mathrm{~mA}$	-	10	15	
Vp	Pass Voltage ${ }^{(2)}$	$\mathrm{Vcc}=5 \mathrm{~V}$, lout $=-5 \mu \mathrm{~A}$	3.7	4	4.2	V

NOTES:

1. Typical values are at $\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$.
2. Pass Voltage is guaranteed but not production tested.

TYPICAL ON RESISTANCE vs Vin AT Vcc $=5 \mathrm{~V}$

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ${ }^{(1)}$	Typ $^{(2)}$	Max.	Unit
ICCQ	Quiescent Power Supply Current	$\mathrm{VCC}=\mathrm{Max} ., \mathrm{VIN}=\mathrm{GND}$ or Vcc, $\mathrm{f}=0$	0.2	6	$\mu \mathrm{~A}$
$\Delta \mathrm{ICC}$	Power Supply Current per Control Input $\mathrm{HIGH}{ }^{(3)}$	$\mathrm{VCC}=\mathrm{Max.} \mathrm{VIN}=,3.4 \mathrm{~V}, \mathrm{f}=0$	-	2.5	mA
ICCD	Dynamic Power Supply Current per MHz ${ }^{(4)}$	$\mathrm{VCC}=$ Max., A and B pins open $\overline{B E n}$ Control Input Toggling at 50% Duty Cycle	-	0.25	$\mathrm{~mA} / \mathrm{MHz}$

NOTES:

1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.
2. Typical values are at $\mathrm{Vcc}=5.0 \mathrm{~V}, 25^{\circ} \mathrm{C}$ ambient.
3. Per TLL driven input ($\mathrm{V} \mathbb{N}=3.4 \mathrm{~V}$, control inputs only). A and B pins do not contribute to $\Delta \mathrm{lcc}$.
4. This current applies to the control inputs only and represents the current required to switch internal capacitance at the specified frequency. The A and B pins generate no significant AC or DC currents as they transition. This parameter is guaranteed but not production tested.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V} \pm 5 \%$;
CLOAD $=50 p F$, RLOAD $=500 \Omega$ unless otherwise noted.

Symbol	Parameter	Min. ${ }^{(1)}$	Typ.	Max.	Unit
$\begin{aligned} & \text { tPLH } \\ & \text { tPH } \end{aligned}$	Data Propagation Delay ${ }^{(2,3)}$ Anto/from Bn	-	0.25	-	ns
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	Switch Turn-on Delay $\overline{\mathrm{BEn}}$ to $\mathrm{An} / \mathrm{Bn}$	1.5	-	6.5	ns
$\begin{aligned} & \text { tPHZ } \\ & \text { tPLZ } \end{aligned}$	Switch Turn-offDelay ${ }^{(2)}$ $\overline{\mathrm{BEn}}$ to $\mathrm{An} / \mathrm{Bn}$	1.5	-	5.5	ns

NOTES:

1. Minimums are guaranteed but not production tested.
2. This parameter is guaranteed but not production tested.
3. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.25 ns for $\mathrm{CL}=50 \mathrm{pF}$. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

ORDERING INFORMATION
IDTQS

Blank Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$
Q1
Q1G
32X861
High Speed CMOS 20-Bit Bus Switch with Flow-Through Pinout

